MECÂNCIA GENERALIZADA GRACELI DE INTERAÇÕES E TRANSFORMAÇÕES.


LEI -

TODA INTERAÇÃO LEVA  A TRANSFORMAÇÕES, E VICE-VERSA.


INTERAÇÕES COMO E EM:

NAS INTERAÇÕES DAS FORÇAS FUNDAMENTIAS.

INTERAÇÕES DE SPIN - ÓRBITA.

ESTRUTURA - TEMPERATURA.

DISTRIBUIÇÃO ELETRÔNICA - NÍVEIS DE ENERGIA - BANDAS.

ELÉTRONS - FÓNOS.

ELÉTRONS - ELÉTRONS.

ESTADO QUÂNTICO - NÚMERO QUÃNTICO.

ENTROPIA -TEMPERATURA - MOVIMENTO BROWNIANO - CAMINHOS DE PARTÍCIULAS.

CATEGORIA - DIMENSÕES - FENÔMENOS [NO SISTEMA SDCTIE GRACELI].


ENTROPIA - ENTALPIA. ETC.


VEJAMOS AS INTERAÇÕES DE CAMPOS.

E EM RELAÇÃO AO SISTEMA  DE MECÂNICA GENERALIZADO GRACELI.



   eletromagnetismo quântico químico relativístico Graceli.



MECÂNICA DO SISTEMA DIMENSIONAL GRACELI.

ONDE A MAIORIA DOS FENÔMENOS FÍSICOS [EM TODAS AS ÁREAS] VARIAM CONFORME O SISTEMA DIMENSIONAL GRACELI.

SENDO ELE;



      EQUAÇÃO GERAL DE GRACELI.[quantização de Graceli].

  G ψ = E ψ = IGFF   E [tG+].... ..  =

G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ μ / h/c ψ(xt)  [x  t ]..



q [tG*] ==G ψ = E ψ = IGFF   E [tG+].... .. 

SISTEMA GRACELI DE:

 TENSOR [tG+] GRACELI = IGFF + SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA., POTENCIAL DE ENERGIA, POTENCIAL QUÍMICO,  SISTEMA GRACELI DO INFINITO DIMENSIONAL.


ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI. 

q [tG*] = energia quântica Graceli.



Força fundamental - INTERAÇÕES GRACELI IG =


IGFF = INTERAÇÕES GRACELI -  Força fundamental.


 T = TEMPERATURA.


PERMEABILIDADE MAGNÉTICA .
INTERAÇÃO SPINS ÓRBITA.
MOMENTUM MAGNÉTICO.
DISTRIBUIÇÃO ELETRÔNICA DOS ELEMENTOS QUÍMICOS.
NÍVEIS E SUBNIVEIS DE ENEREGIA.
BANDAS DE ENERGIAS.

IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE. [1]




IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE./G ψ = E ψ =  E [tG+].... ..  [2]




1 / IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE. [-1]




1 / IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE./G ψ = E ψ =  E [tG+].... ..  [-1]





RELATIVIDADE DAS FORÇAS FUNDAMENTAIS.

IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE. / c .





IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE./G ψ = E ψ =  E [tG+].... ../ c .



Taxa de fluxo de calor é o quociente da quantidade de calor que atravessa uma superfície durante um intervalo de tempo (fluxo de calor) pela duração desse intervalo. A densidade de taxa de fluxo de calor é o quociente do fluxo de calor que atravessa uma superfície pela área dessa superfície. O calor é energia em fluxo, existindo três mecanismos para ocorrer essa transferência de calor: a condução, a convecção e a radiação.[1] Na condução, a taxa de fluxo de calor é explicada por vibrações de átomos e elétrons que se propagam ao longo de uma rede. O calor flui da maior temperatura para a menor temperatura, denotadas  e , onde os índices q e f significam: "fonte quente" e "fonte fria", respectivamente.[2] Na convecção, uma parte de um fluido é aquecida por uma fonte quente e se dilata, consequentemente diminui sua densidade, fazendo com que essa parte aquecida vá para cima por causa da força do empuxo e subsequentemente a parte mais fria preenche a posição onde estava a parte mais quente; o processo pode se repetir inúmeras vezes; esse processo dá origem às correntes de convecção.[2] Na radiação, o calor se dá através de radiação térmica, que são ondas eletromagnéticas, com o sistema em observação; a radiação não necessita de matéria para se propagar, pode se propagar no vácuo.

Condução Através de Placa Simples

A taxa de fluxo ou taxa de transferência tem uma relação direta com a diferença de temperatura ; e tem uma relação inversamente proporcional com a espessura de isolante  entre os pontos de ; e tem também uma relação proporcional com a área  em que flui o calor. A taxa de fluxo de calor por condução  entre dois sistemas é medida em Watt (joules por segundo).

taxa de fluxo de calor pode ser definido por:

Condução de calor por placa isolante simples.
[2]
/G ψ = E ψ =  E [tG+].... ../ c .
  • Q/∆t é a taxa de fluxo de calor;
  • K é a condutividade térmica (depende do material);
  • A é a área de superfície;
  • T é a variação na temperatura;
  • L é a espessura de material isolante.
[2]Tabela com condutividades térmicas de alguns materiais
MaterialK (W/m.k)
Espuma de Poliuretano0,024
Ar (seco)0,026
Lã de Pedra0,043
Fibra de Vidro0,048
Hélio0,15
Aço Inoxidável14
Chumbo35
Ferro67
Latão109
Alumínio235
Cobre401
Prata428
/G ψ = E ψ =  E [tG+].... ../ c .

O conceito de Resistência Térmica foi introduzido na atuação da engenharia. O valor de Resistência Térmica  é definido:

/G ψ = E ψ =  E [tG+].... ../ c .

A unidade de Resistência Térmica no SI é m².K/W.

Observação 1: ∆T/L é chamado gradiente de temperatura;

Observação 2: A taxa de fluxo de calor é comumente representado pela letra grega Fi (Φ);

Observação 3: A equação dada acima também é conhecida como Lei de Fourier.



Na física, a Entropia de Tsallis é uma generalização da Entropia de Boltzmann–Gibbs.[1] Ela foi formulada em 1988 por Constantino Tsallis[2] como uma base para generalizar a mecânica estatística padrão. A relevância física da teoria de Tsallis foi muitas vezes debatida no cenário da literatura física mundial. Entretanto, Ao longo da década passada, pesquisadores têm mostrado que a matemática de Tsallis parece descrever acuradamente comportamentos em lei de potência em uma larga gama de fenômenos, desde a turbulência de fluidos até os fragmentos criados nas colisões de partículas de altas energias.

Sendo elas consequências derivadas dessa entropia não-aditiva, como a mecânica estatística não extensiva,[3] que generaliza a teoria de Boltzmann-Gibbs.

Dado um grupo de probabilidades discretas  com a condição , e  qualquer número real, a Entropia de Tsallis é definida como:

/G ψ = E ψ =  E [tG+].... ../ c .

Nesse caso, p é a distribuição de probabilidade de interesse, e q é um parâmetro real. No limite, quando q → 1, a entropia de Boltzmann-Gibbs é recuperada.

Para distribuições de probabilidades contínuas, definimos a entropia como:

/G ψ = E ψ =  E [tG+].... ../ c .

A Entropia de Tsallis tem sido usada em conjunto com o princípio da Máxima Entropia para derivar a distribuição de Tsallis.

Famílias exponenciais

Muitas distribuições comuns, como a distribuição normal, pertencem às famílias exponenciais estatísticas. A entropia de Tsallis para uma família exponencial[4][5] pode ser escrita[6] como:

/G ψ = E ψ =  E [tG+].... ../ c .

onde F é log-normalizador e k o termo que indica a medida portadora. Para a normal multivariada,[7] o termo k é zero e, portanto, a entropia de Tsallis é fechada.



Na mecânica estatística, a fórmula de entropia de Boltzmann (também conhecida como equação de Boltzmann-Planck), é uma equação que permite calcular a entropia e o número de micro-estados de um sistema específico.[2] A fórmula de Boltzmann mostra a relação entre a entropia e o número de maneiras pelas quais os átomos ou moléculas de um sistema termodinâmico podem ser organizadas.[3]

Definição

A fórmula de Boltzmann é uma equação de probabilidade que relaciona a entropia S de um gás ideal com a quantidade W, o número de micro-estados reais correspondentes ao macro-estado do gás:

 

 

 

 /G ψ = E ψ =  E [tG+].... ../ c .

(1)

onde kB é a constante de Boltzmann (também escrita como k), que é igual a 1.380649 × 10−23 J/K.[4][5]

Esta fórmula está gravada no túmulo de Boltzmann (em Viena) na forma:

 

 




/G ψ = E ψ =  E [tG+].... ../ c .






Comentários

Postagens mais visitadas deste blog